

Evaluating Different Techniques for Joining Carbon Fiber Composite Parts

I.A. Rousseau Staff Researcher GM R&D Polymer Composite Systems Group

High Volume Forming Symposium

Carbon Fiber Composites (CFC): The base resin

Thermoplastics

- Fast forming (~ < 5min)
- "Re-formable"/"De-formable"
- Low(er) strength
- Ductile
- Single layer construction
- Recyclable

Thermosets

- Slow forming (≥ 20 min)
- Set shape
- High(er) strength
- Brittle
- Laminate construction
- Not easily recyclable

→ The selection of the joining techniques largely depends on the material properties

Polymer & composite Joining Techniques

- Adhesive
- Mechanical Metal fasteners
 - Riveting (pop, SPR, etc.)
 - Flow drill screw
 - Staking
 - Co-molding of fasteners
- Mechanical Plastic/composite fasteners
 - Riveting/staking (heat, IR, laser, Ultrasonic)
- Welding
 - Mechanical force (Ultrasonic)
 - Frictional force (Vibration, Spin)
 - Energy source:
 - Conduction (heat)
 - Radiative (laser, IR)
 - Induction (EM)

From Development to Implementation

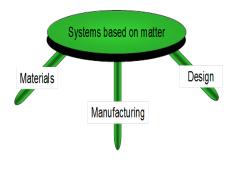
COMPANY <u>VISION</u>, MANUFACTURING <u>STRATEGY</u> & ENGINEERING <u>REQUIREMENTS</u>

Technology Development – *R*&*D*, *Supplier*, *Collaborations*, etc.

- Evaluation (applicability, performance & product requirement, math modeling)
- Process development
- Technology transfer

Process Validation - Manufacturing & Engineering

- Tool selection for manufacturing environment
- Process & quality monitoring (Fault/No fault, Good/Bad)
- Process development and optimization on selected tools based on product engineering performance requirements.


Process Manufacturing Integration

- Validate assembly process in a scaled-down manufacturing environment with selected process and selected tools
- Math model development and validation
- Production readiness evaluation

Selection Factors

Manufacturing integration

Performance

Knowing the material, design and manufacturing implications is crucial for technology implementation

Time

Material

En

(re

- Type and properties
- Manufacturing processes (e.g., co-molding)

Cost

- Application
 - Use requirement
 - Performance requirements

Joining Techniques: Advantages and Limitations

Joining methods	Resistance Spot Welding	Adhesive	Welding		Mechanical Fastening		Accumptions
			Ultrasonic/Vib.	InfraRed	Plastic (IR, US)	Metal	Assumptions
Cycle time	≤ 5 s	≥ 20 min	≤ 5 s	≤ 10 s	10-20 s	≤ 10 s	-
Joint Performance	++	Ref.	~	~	+	++	Comparable joint design
Cost - Inv.+ maint.	Mixed Technology Solution:						Comparable cycle time
Cost - Labor	++	- Compounds advantages					Robotic/Manual
Design Flexibility	~	- Alleviates limitations					Part geometry, accessibility, etc.
Appearance	-	Ref.	*	~	*		Customer interface
Corrosion	++	Ref.	~	~	~		CF composites
Recyclability	+	Ref.	+	+	+	~	
Added weight	+	Ref.	++	++	+	-	
Implementation requirement	NA	NA	Development	Development	Development	Improvement	

Mixed Technologies: An Example

Sealing + Dissimilar material joining:

In "Corvette's carbon hood creates shock and awe," Composites Technology, 2009

Geo-Setting + Strength:
Self-Piercing rivets

In "Joining Tomorrow's cars," Autospeed, Issue 144, 2001

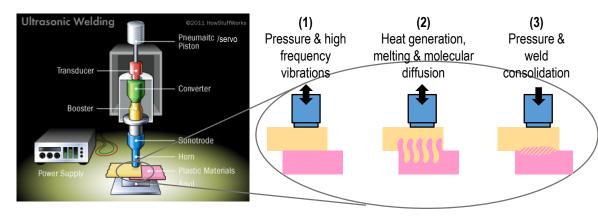
<u>Limitations</u>: material type, stack up, part design/dimension

When adhesive bonding is necessary, SPR offers geo-setting capabilities and alleviates adhesive bonding long cycle time

Rapidity, strength, corrosion prevention, cleanliness, weight reduction, recyclability for all other composite joints

Mixed Technologies Example: Development Needs

✤ Self Piercing rivets



• Material:

Thermoset/Thermoplastic, substrate thickness, rivet material type

- Joint Design: Stack-up, material gage, rivet material type
- **Design allowances** for manufacturing implementation
- Joint Performance

✤ <u>Ultrasonic Welding</u>

- Manufacturing implementation: Flexible tooling
- Process development: Specificity
 - Welding <u>schedules</u>
 - Process/quality monitoring
- Joint performance

Conclusions

There is no "ONE" answer

 \rightarrow **Mixed technologies** appear to be the best approach

- Fast technologies adapted to composite joining are not mature enough for OEM's
 - \rightarrow Require **extensive development** efforts to:
 - Understand the technology and its implications relative to:
 - Joint performance
 - (Automotive) Manufacturing needs
 - Model and predict the joint performance
 - Evaluate **each technology business case** for best implementation