Exploring Advancements In The Use Of Aluminum Extrusion In Lightweighting GALM 2015

Agenda

- The North American Aluminum Extrusion Industry and the Aluminum Extruders Council
- Expanding Extrusion Applications
- Leveraging the 3 critical variables Alloy, Geometry,
 Fabrication

Extrusion represents almost 20% of North American aluminum shipments

NA Aluminum Shipments 2014 25.5 B lbs.

NA Extrusion Shipments

Transportation is Extrusion's 2nd largest market, and increasing in importance, with autos a major element

Extrusion Transport Usage 1.5 B lbs, 2014

^{*} Other: rail, marine, aircraft, military, r.v.

The Aluminum Extruders Council (AEC) represents the North American industry

- 50+ extruder members in the US and Canada, operating 220+ presses in 80 locations; 7 metal supplier members
- ~ 75% of NA extrusion production
- A 3-part mission
 - Assist users and potential users in the effective utilization of extruded components
 - Advance member professionalism through best practice development and sharing
 - Promote fair trade, and preserve a robust North American industry

In the past 2 years, AEC members have put about 20 additional presses in place or on order ...

New presses by size

At least 4— along with one major press upgrade - are dedicated to automotive. An investment of ~\$100 million for over 75mm# of capacity

Source: Bonnell

AEC's Automotive Industry Team: 8 Extruders/Component Suppliers and 2 Metal Suppliers

Their focus:

- Education webinars, events like this
- Advancing the art Joining Manual (with AA and EAA)

While Aluminum has a long increase in auto usage, extrusion – especially extruded shapes – only recently gained momentum

Structural applications are expected to drive extrusion use

Extrusion pounds/vehicle

Туре	Example	2012	2017	2025	Incr. in # usage*	
Shapes	Interiors, Seats, Trim, Sunroof, Others	1	1.2	2	67%	
Shapes	Exterior	3	3.2	4	25%	
Shapes	Bumpers	4	5.5	6	9%	
Shapes	Body Structures	1	4	17	325%	
Shapes	Steering & Brakes	3	3	4	33%	
Tube	Drive Shafts	1	1	1		
Rod & Bar	Transmission	4.5	4.5	4.5		
Shapes	Mounts	1.5	2	2.5	25%	
Tube	Heat Exchangers	5.3	5.3	5.5		
Shapes	Suspension / Links / Chassis	1	2	3	50%	
Total		25.3	31.7	49.5	84%	

^{*} Per vehicle 2017-2025; Source: Ducker International, AEC analysis

Currently, we see applications throughout the vehicle ...

... and the lightweighting dividends of Aluminum are clear

Full Size Crew Cab Pick-up

Ford F-150

Segment Competitor

Cab 406 647 Bed 115 281

Luxury Sedan

Tesla Model S

605 810

Audi A8

593 822

Designing with Extrusion

Key Parameters

- Alloy Selection
- Shape Development
- Fabrication & Assembly Technology

As of March, 2014, there were 513 Alloys Registered with the Aluminum Association. This does NOT include proprietary alloy variants.

Trace amounts matter ...

Alloy Composition

Alloy Composition			
, ,	6063	6061	7004
Silicon (Si)	0.40%	0.60%	0.13%
Magnesium (Mg)	0.70%	1.00%	1.50%
Iron (Fe)	0.18%	0.35%	0.18%
Copper (Cu)	0.05%	0.28%	0.05%
Manganese (Mn)	0.05%	0.05%	0.45%
Chromium (Cr)	0.05%	0.10%	0.05%
Zinc (Zn)			4.20%
T	4 400/		C F C0/
Total Alloying Elements	1.43%	2.38%	6.56%
% Aluminum	98.57	97.62	93.44

... in determining physical properties as well as extrudability (or cost)

A new alloy application: Extruded 5083 in lieu of 5083 sheet or plate

Why 5083?

- Outstanding corrosion resistance (primarily used today for marine applications)
- Excellent for high speed laser welding

Why extrusion?

- Near-net shape minimizes downstream machining and other manufacturing operations
- Low tooling cost, with short lead times

Note that an variant of the standard 5083 alloy was developed to provide higher tensile and yield performance

5XXX alloy/ Temper Mechanical Properties									
	UTS, MPa		YTS, MPa		%Elongat				
Alloy	Min	Max	Min	Max	ion Min				
5083-O	269	352	110	-	14				
5083-H111	276	-	165	-	12				
5083-H112	269	-	110	-	12				
5083 CI I	310	-	241	-	9				

Alloys/Geometry

ENGINEERING

There is often more than one "right" answer

Production Multi-Material Body Structure: Lotus Evora (Launched 2009)

Lotus used profile geometry – and multiple hollows - to offset a "lower strength" alloy

Extruded Roof Bows

Ford F-150

Tesla Model S

20

Challenge: simplify steelbased 28 part mechanism for panoramic sunroof

Extrusion-based result

- 6 pieces only 2 extrusions + 4
 small aluminum stampings
- 20% weight savings

2.5±0.1

- Cost neutral with investment reduction for volume
- 22 piece part reduction; reduced labor cost

Fabrication

Engage an experienced extruder early on!

- Simply converting a steel component to aluminum is rarely cost effective
- Ensure that you have realistic cost expectations
- Understand the inevitable tolerance trade-offs

Thank You!

Exploring Advancements In The Use Of Aluminum Extrusion In Lightweighting GALM 2015

Martin J. Bidwell
Chairman, Aluminum Extruders Council
President/CEO, Magnode Corporation
mbidwell@magnode.com

www.aec.org